FDiBC: A Novel Fraud Detection Method in Bank Club based on Sliding Time and Scores Window
نویسندگان
چکیده مقاله:
One of the recent strategies for increasing the customer’s loyalty in banking industry is the use of customers’ club system. In this system, customers receive scores on the basis of financial and club activities they are performing, and due to the achieved points, they get credits from the bank. In addition, by the advent of new technologies, fraud is growing in banking domain as well. Therefore, given the importance of financial activities in the customers’ club system, providing an efficient and applicable method for detecting fraud is highly important in these types of systems. In this paper, we propose a novel sliding time and scores window-based method, called FDiBC (Fraud Detection in Bank Club), to detect fraud in bank club. In FDiBC, firstly, based on each score obtained by customer members of bank club, 14 features are derived, then, based on all the scores of each customer member, five sliding time and scores window-based feature vectors are proposed. For generating training and test data set from the obtained scores of fraudster and common customers in the customers’ club system of a bank, a positive and a negative label are used, respectively. After generating training data set, learning is performed through two approaches: 1) clustering and binary classification with OCSVM method for positive data, i.e. fraudster customers, and 2) multi-class classification including SVM, C4.5, KNN, and Naïve Bayes methods. The results reveal that FDiBC has the ability to detect fraud with 78% accuracy and thus can be used in practice.
منابع مشابه
A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملA Fuzzy TOPSIS Method Based on Left and Right Scores
Multiple criteria decision making (MCDM) problem is one of the famous different kinds of decision making problems. In more cases in real situations, determining the exact values for MCDM problems is difficult or impossible. So, the values of alternatives with respect to the criteria or / and the values of criteria weights, are considered as fuzzy values (fuzzy numbers). In such conditions, th...
متن کاملtask-based language teaching in iran: a mixed study through constructing and validating a new questionnaire based on theoretical, sociocultural, and educational frameworks
جنبه های گوناگونی از زندگی در ایران را از جمله سبک زندگی، علم و امکانات فنی و تکنولوژیکی می توان کم یا بیش وارداتی در نظر گرفت. زبان انگلیسی و روش تدریس آن نیز از این قاعده مثتسنی نیست. با این حال گاهی سوال پیش می آید که آیا یک روش خاص با زیر ساخت های نظری، فرهنگی اجتماعی و آموزشی جامعه ایرانی سازگاری دارد یا خیر. این تحقیق بر اساس روش های ترکیبی انجام شده است.پرسش نامه ای نیز برای زبان آموزان ...
Fraud Analytics: a Survey on Bank Fraud and Fraud Prediction Using Unsupervised Learning Based Approach
Fraud in banks has been steadily growing over the past years and is a challenge to banks worldwide. The complexity involved in detection of such fraudulent activities further adds to the problem. A thorough examination of fraud and its possibilities is necessary to pinpoint and distinguish the few fraudulent cases within the vast volumes of banking data. In this paper we have discussed various ...
متن کاملahp algorithm and un-supervised clustering in auto insurance fraud detection
this thesis is a study on insurance fraud in iran automobile insurance industry and explores the usage of expert linkage between un-supervised clustering and analytical hierarchy process(ahp), and renders the findings from applying these algorithms for automobile insurance claim fraud detection. the expert linkage determination objective function plan provides us with a way to determine whi...
15 صفحه اولAdaptive stochastic resonance method for impact signal detection based on sliding window
Aiming at solving the existing sharp problems in impact signal detection by using stochastic resonance (SR) in the fault diagnosis of rotating machinery, such as the measurement index selection of SR and the detection of impact signal with different impact amplitudes, the present study proposes an adaptive SR method for impact signal detection based on sliding window by analyzing the SR charact...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 1
صفحات 219- 231
تاریخ انتشار 2018-03-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023